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Abstract 

Artificial Intelligence (AI) algorithms are known to be highly demanding in terms of computing 
resources. Thanks to the increase of computational power of the latest processing devices, AI is also 
becoming popular for the Space industry for various applications such as On-board data processing 
for observation satellites, automated guidance of Spacecrafts, On-board decision for collision 
prevention, Communication satellites, Fusion of data sources for better predictability, … 

Until recently, Space industry was facing the challenge to get access to state-of-the-art processing 
components that would comply with Space requirements, i.e. high reliability, robustness, and radiation 
tolerance. 

Led by the Grenoble University Space Centre (CSUG), the QlevEr Sat project leverages the high 
computing capabilities of Qormino QLS1046-Space radiation tolerant processing modules to run AI 
algorithms on-board, together with the high resolution of the images taken by the Emerald sensor. 

This white paper first presents the general performances and functionality of the QLS1046-Space 
processor. Then, the main results from those benchmarking activities are given, to demonstrate the 
feasibility to use QLS1046-Space to run embedded AI in Space. 

 

Introduction 

Artificial Intelligence (AI) algorithms are known to be highly demanding in terms of computing 
resources. Thanks to the increase of computational power of the latest processing devices, AI is 
becoming popular for ground applications. AI now competes with traditional data processing in a 
number of applications, such as face recognition, autonomous driving, or robots. 

 

The Space industry can also benefit from AI in various applications: 

- On-board data processing for early warnings to situations, 
- Observation and meteorological satellites, where on-board processing allows to send only 

relevant and pre-processed data to the ground, reducing downlink bandwidth requirements, 
- AI can improve performance in automated guidance of Spacecrafts in critical maneuvers such 

as docking or landing, 
- On-board decision allows better collision prevention thanks to early reaction, and offers 

possibilities of self-health monitoring and ultimately autonomous self-reconfiguration, 
- Communication satellites can benefit from smart data routing and optimized antenna pointing 

based on actual traffic and weather conditions to increase data rate and minimize power 
consumption, 

- Fusion of data sources from various kind of sensors, allowing to see what is not visible to the 
“human eye”, including on-board analysis of large data sets in deep Space and Science 
missions. 



Until recently, despite this wide range of new possibilities, Space industry was facing the challenge to 
get access to state-of-the-art processing components that would comply with Space requirements, i.e. 
high reliability, robustness, and radiation tolerance. 

Led by the Grenoble University Space Centre (CSUG), the QlevEr Sat is developing a nanosatellite using 
artificial intelligence algorithms to observe the Earth and meet social challenges such as observation 
of illegal deforestation, monitoring of CO2 emissions or evaluation of damages after a natural disaster.  

 

 

 

 

 

 

 

 

This smart satellite will embed an Emerald 16MP image sensor and a Qormino® QLS1046-Space 
processing module, both new radiation-tolerant and Space-qualified components from Teledyne e2v. 
The project leverages the high computing capabilities of QLS1046-Space to be able to run the AI 
algorithms on-board, together with the high resolution of the images taken by the Emerald sensor. 

 

  

 

 

 

In the frame of this project, a part of the feasibility study aimed at verifying the computing capability 
of the Qormino QLS1046-Space for AI algorithms. This white paper first presents the general 
performance and functionality of QLS1046-Space. Then, main results obtained in those benchmarking 
activities are given, demonstrating the feasibility to use QLS1046-Space to run AI in Space. 

  

Figure 1 : QlevEr Sat Nanosatellite 

Figure 3: Qormino® QLS1046-4GB Figure 2: EMERALD Sensor 



I. General performance and functionality of Qormino® QLS1046-Space 

Qormino is a line of processing modules from Teledyne e2v dedicated to Space and High-reliability 
applications. Those modules combine GHz-class multicore processors, with high speed DDR4 
memories, in compact 44 x 26mm dimensions. They come in a 0.8mm BGA package, and are designed 
to respond to SWaP (Size, Weight and Power) constraints. With built-in DDR4 bus layout and “building-
block” approach, design is facilitated while guaranteeing a high performance. 

QLS1046-Space is the Qormino version dedicated to Space. It embeds a Quad-Core Arm® Cortex®-A72 
Microprocessor running up to 1.8GHz, with ECC-protected L1 and L2 cache memories for reliable 
behaviour. It features a rich set of peripherals, including integrated packet processing acceleration, 
high speed serial links supporting 10 Gb Ethernet, PCIe® Gen3, SATA 3.0 and USB, as well as a number 
of general purpose interfaces such as SPI, I²C, and UART. The current version integrates 4GB of DDR4 
with transfer speed up to 2.4GT/s, and a version with 8GB is also targeted. 

 

Figure 4: Architecture of QLS1046-4GB-Space 

 

Apart from the pure performance aspect, the reason for selecting this device is that it is Space-
compliant. Both the processor and the memory are radiation tolerant: 

- SEL free up to more than 60MeV.cm²/mg 
- Known SEU/SEFI cross-sections up to more than 60MeV.cm²/mg 
- TID: 100krad (Si) 

In addition, QLS1046-Space and its components are qualified, manufactured, and screened following 
NASA or ECSS standards. 

 

  



II. Benchmark & Results  

Benchmarking activities were performed to verify in practice the computing capability of QLS1046-
Space to run AI algorithms for Space applications. The focus is mainly on AI for image processing, since 
the QlevEr Sat project targets earth observation use cases. In this study, only neural networks with 
deep learning have been tested. Classical machine learning usually requires less computing resources, 
thus it would be expected to get even better results in machine learning. 

 

In this study, the performances of QLS1046-Space were evaluated on three different axes: 

1) The pure computing performances were evaluated in terms of GFLOPS (Giga Floating Point 
Operations Per Second), since this is the typical way of evaluating the computing performance of 
a device in AI applications. 

2) An inference benchmark was performed to verify the capability of the device to execute neural 
networks. Several classical neutral network architectures have been tested. 

3) Training performance was briefly assessed, to evaluate the possibility of applying learning or fine-
tuning on QLS1046-Space. 

 

Benchmark setup 

The performance assessment was realized with a QLS1046-Space development kit, which has a number 
of available interfaces. The operating system used throughout the benchmark was Linux (Ubuntu 
18.04). The QSL1046-Space device inside the development kit had 4GB of integrated DDR4 memory. 
The version with 8GB of DDR4 memory would have been more efficient to execute AI, but it was not 
available at the time of the testing. In addition, the processor was running at 1.6GHz, instead of 1.8GHz 
maximum frequency. This means that the results presented in this white paper are somewhat limited 
by the amount of DDR4 memory available and the running frequency of the processor. 

 

 

 

 

 

 

 

 

 

 

In some of the following benchmark results, a regular computer was used as a basis for comparison to 
rate QLS1046-Space performance. This computer had an Intel® Core™ i7-9750H processor running at 
2.6GHz and 32GB of DDR4. It was running Linux. It is considered as a good computer to perform AI, 
which is why it is a convenient reference in the following. 

Figure 5 : QLS1046-Space Development Kit 



Benchmark results 

 

Performances of QLS1046-Space were evaluated on the following three axes: 

 

A. Pure computing performance 

For the pure computing performance evaluation, the benchmark [1] was used, which consists in a small 
and simple test software. In the results, the performance of QLS1046-Space is compared to that of the 
computer with the Intel® Core™ i7-9750H processor. It should be noticed that the execution of the 
software does not take advantage the hardware accelerators of the processors. This explains in 
particular why the GFLOPS numbers obtained here are lower that what can be found in the literature 
for those processors. Figure 7 presents the pure results in GFLOPS to compare both targets. Figure 8 
compares power efficiency since this is a key topic in Space applications.   

 

 

 

 

 

It is observed that the gap between the two devices depends on the number of cores used, and with 
higher number of cores the difference in performance reduces. Those results highlight that QLS1046-

Figure 6: Benchmarks 

Figure 7: Summary of the computing performance comparison. 

Figure 8: Power efficiency in quad core operation.  
 

Calculated from thermal power characteristics of both devices, 
45W @100°C for the i7 (Table 5-2 of [2]), 14.6W @105°C for 

QLS1046-Space (Table 8 of [3]). 



Space offers about half of the computing capabilities of the i7 in the quad-core configuration, which is 
known to be a good processor to perform AI on ground. Hence, QLS1046-Space offers a fair amount of 
computing performance to perform AI in Space. In addition, QLS1046-Space exhibits higher power 
efficiency making it well suited for Space systems. 

 

B. Deep learning inference benchmark 

In this benchmark, tests are performed to evaluate the performance of QLS1046-Space in inference, 
meaning when the device uses a neural network to process an image. Only classical neural networks 
are tested in the study, first with Arm Compute Library [5], then AI-Benchmark [4] on TensorFlow [7], 
and ConvNet [6] on PyTorch [8]. It should be noticed that the two most popular libraries used for IA 
are TensorFlow and PyTorch proposed by Google and Facebook respectively, with both libraries 
supported by Arm [9]. Those networks are pre-trained to identify objects in pictures and are widely 
used in the existing object classifiers such as r-cnn, fast-rcnn, faster r-cnn [10] or CenterNet [11]. 
However, TensorFlow and PyTorch libraries are evolving very quickly, and this is the reason for 
evaluating first the performance with Arm Compute Library, which is considered more stable. 

 

i. Arm Compute Library 

In this benchmark, Arm Compute Library [5] is used to run different classical neural networks. The 
results obtained on QLS1046-Space are shown in the Table 1: 

Network 

Execution time  
[ms] 

Number of 
operations for 
an inference 

[MFLOP] 

Computing performances 
[GFLOPS] 

Single core Quad core Single 
core Quad core 

Alexnet 153 74 727 5 10 
Googlenet 286 109 1500 5 14 

Inception v3 848 314 6000 7 19 
Inception v4 1870 655 13000 7 20 
Mobilenet 118 44 570 5 13 
Resnet50 501 206 4000 8 19 

Squeezenet 145 64 360 2 6 
Vgg16 1090 418 16000 15 38 
Yolov3 6540 2500 66000 10 26 

Table 1: Performance of QLS1046-Space with Arm compute library.  

Those results confirm that it is possible to perform on-board image classification using QLS1046-Space, 
with this kind of common classifiers, and with reasonable execution time. Those results are especially 
interesting considering that Arm compute library is one of the major frameworks for AI. 

 

 

  



ii. AI-Benchmark 

AI-Benchmark [4] instantiates backbones in the TensorFlow format, which are very common neural 
networks originally created for image classification. The results of the benchmark for different neural 
networks are given in the Table 2: 

Backbone Picture 
size 

Execution 
time [ms] 

Variability 
[ms] Description 

VGG16[9] 224x224 1320 7 Network trained on ImageNet [12] to 
classify 1000 objects. 

VGG19[9] 512x512 13562 144 Network trained on ImageNet [12] to 
classify 1000 objects. 

ResNet-V2-50 346x346 868 5 Classifier based on residual neural 
network [13] 

ResNet-V2-152 256x256 1538 18 Classifier based on residual neural 
network 

Table 2: AI-Benchmark results on QLS1046-Space.  

The results show that QLS1046-Space allows to perform an on-board image classification with classical 
neural networks in about 1s. This implies an optimized memory management with the use of FP16 
type, and with picture size suitable with the memory available of 4GB. It is noticed that VGG19[9] is 
around 10 times longer to execute than other tests, which may be due to cache memories 
configuration and DDR4 size limitation. 

Based on the results, QLS1046-Space obtains a score of 103.  Neural networks are known to require 
large amounts of memory, hence the performance obtained here is limited by the DDR4 size of 4GB 
on the tested version. Much higher ranking is expected with an 8GB version. 

 

iii. Convnet 

In this benchmark, ConvNet [6] on PyTorch is tested on QLS1046-Space. Pytorch tends to be used more 
and more often over TensorFlow. PyTorch was originally more complex to use but was more flexible. 
From PyTorch version 1.8, an important reduction in complexity is expected to benefit to QLS1046-
Space. It should also be noticed that PyTorch is now can handle tools such as SLURM [14] on pytorch-
lightning [15]. Convnet benchmark results on PyTorch are given in the Table 3: 

Network Execution time [ms] 
QLS1046-Space @1.6GHz Intel® Core™ i7-9750H @2.6GHz 

Alexnet 187 1.72 
VGG11 764 4.28 

ResNet50 578 7.29 
Squeezenet1_0 328 2.28 
Densenet121 1283 17.93 
Mobilenet_v2 2337 6.38 

Shufflenet 1278 8.49 
Unet 1263 4.98 

Table 3: Convnet results on QLS1046-Space.  

The benchmark shows that the i7 is performing much faster than QLS1046-Space, which is limited again 
by the size of memory available. Despite the gap in performance, it is still considered that the 
performance level offered by QLS1046-Space is acceptable to implement on-board AI processing. 



C. Deep learning training performance 

Training performance using QLS1046-Space was quickly tested on Convnet with TensorFlow. It was not 
extensively tested since most up-to-date backpropagation [16] benchmarks require at least 8GB of 
RAM memory. Table 4 shows the comparison of the training time for one sample on ResNet50 between 
QLS1046-Space and the Intel® i7. 

 

Network Training time for one sample [ms] 
On QLS1046-Space On Intel® Core™ i7-9750H 

ResNet50 3782 20 
Table 4: Comparison of training performance.  

This result clearly shows the penalty of the lack of RAM memory on the current version of QLS1046-
Space for training on traditional image classifiers. It should be noticed that a complete training usually 
requires hundreds of samples. This result has to be mitigated due to the fact that image classifiers are 
known to be highly demanding in computing resources. Since it will be time-consuming to perform a 
complete training on QLS1046-Space, an alternative that can be considered is to perform fine-tuning 
[17] on-board.  

Training small convolutional neural networks for simple detection use cases seems feasible with 
QLS1046-Space, as well as deep learning for processing time-series or 1-D signals. In terms of training 
capabilities on images, QLS1046-Space would be more efficient in classical machine learning, but those 
models are more complex to build.  

 

III. Discussion 

QLS1046-Space offers a decent amount a computing capability allowing to run deep learning AI for 
image processing in Space. The device is not as powerful as tailored-made solutions that are available 
for AI inference in ground applications, but it is the most powerful Space-qualified CPU available on 
the market. In terms of pure computing capabilities, it offers performance in the same order of 
magnitude as an Intel® Core™ i7-9750H. From the AI performance point of view, the main drawback 
of the current version is the 4GB memory, which requires an optimized memory management to run 
AI for image processing. On next versions with 8GB DDR4 memory or more, AI performance would be 
significantly increased, and would reduce the burden of optimized memory management.  

Performance obtained in the previous benchmarks was evaluated with classical deep neural networks 
without taking advantage of the specific QLS1046-Space architecture. Different AI topologies are more 
optimized to run on embedded targets, which would bring a better efficiency of the AI running on 
QLS1046-Space. Apart from AI computing performance, the study shows that QLS1046-Space exhibits 
good power efficiency making it well suited for Space systems where electrical power is limited and 
power dissipation is an issue. From the electronic architecture point of view, it might be relevant to 
add an FPGA as a companion-chip for QLS1046-Space, in which case the FPGA could take care 
efficiently of the pre-processing, and QLS1046-Space would then perform the heavy work. 

In this study, the primary focus was on deep learning AI for image processing, which is considered one 
of the most demanding application in terms of computing resources. For instance, processing of 1-D 
time series is much less demanding that image processing. Hence, the outcome of the study is that 
QLS1046-Space would also be suitable for other AI applications in Space, such as heterogeneous data 



analytics, on-board decision making, and ground to Space and satellite to satellite communications. 
QLS1046-Space would also be able to address traditional machine learning applications. 
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